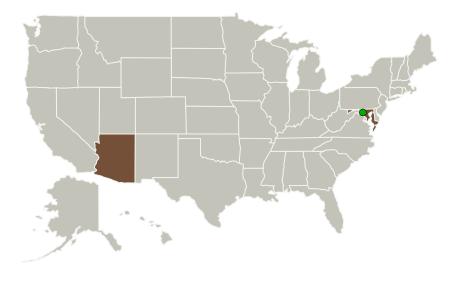
Compact High Pulse Energy Single Frequency Fiber Amplifier, Phase II



Completed Technology Project (2017 - 2019)

Project Introduction

Atmospheric methane is the second most important anthropogenic greenhouse gas. The overtone lines of methane at 1.65 micron are well suited for remote sensing of atmospheric methane in the Earth?s atmosphere. NASA have already demonstrated ground-based and airborne methane detection using Optical Parametric Amplifiers at 1651 nm using a laser with a narrow linewidth. In this setup a single frequency pulsed laser near 1 micron wavelength with several mJ pulse energy is needed. We propose to develop a compact pulsed single frequency fiber laser with greater than 3mJ pulse energy and 30ns pulse width using our innovative Yb-doping fiber. Highly efficient Yb doped glasses will be developed, double cladding fibers will be designed and fabricated, the amplifier performance will be characterized. In Phase II we will build a deliverable prototype high energy and high peak power fiber laser system for NASA.

Primary U.S. Work Locations and Key Partners

Compact High Pulse Energy Single Frequency Fiber Amplifier, Phase II Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Compact High Pulse Energy Single Frequency Fiber Amplifier, Phase II

Completed Technology Project (2017 - 2019)

Organizations Performing Work	Role	Туре	Location
AdValue Photonics, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Tucson, Arizona
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations		
Arizona	Maryland	

Project Transitions

April 2017: Project Start

April 2019: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140822)

Images

Briefing Chart ImageCompact High Pulse Energy Single Frequency Fiber Amplifier, Phase II

Briefing Chart Image (https://techport.nasa.gov/imag e/126830)

Final Summary Chart Image

Compact High Pulse Energy Single Frequency Fiber Amplifier, Phase II (https://techport.nasa.gov/image/125815)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

AdValue Photonics, Inc.

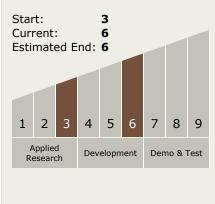
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Shibin S Jiang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Compact High Pulse Energy Single Frequency Fiber Amplifier, Phase II

Completed Technology Project (2017 - 2019)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 TX08.1 Remote Sensing
 - Instruments/Sensors

 ☐ TX08.1.5 Lasers

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

